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Abstract. The classical staggered scheme for the incompressible Navier-Stokes equations is generalized from
Cartesian grids to general boundary-fitted structured grids. The resulting discretization is coordinate-invariant. The
unknowns are the pressure and the contravariant volume flux components. The grid can be strongly nonuniform
and nonorthogonal. The smoothness properties of the coordinate mapping are carefully taken into account. As a
result, the accuracy on rough grids is found to be at least as good as for typical finite element and nonstaggered
finite volume schemes. Extension to compressible flows results in a scheme with Mach-uniform accuracy and
efficiency for Mach numbers ranging fromM = 0 to M > 1. Accurate discretization of two-equation turbulence
models is also possible.
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1. Introduction

We think nobody will dispute that in Cartesian coordinates, computation of incompressible
flows is best performed on the staggered grid proposed by Harlow and Welch [1]. In combi-
nation with the pressure correction method an efficient and accurate method to compute insta-
tionary flows is obtained. The method is also straightforward, provided spatial discretization
precedes introduction of pressure correction, so that no artificial pressure boundary condition
is required.

However, there is no such consensus when the domain is not rectangular. We cannot be
complete in listing all possible approaches, and even less so in referring to the abundant litera-
ture. A first distinction may be made between structured and unstructured grids. In structured
grids the number of cells that share an interior vertex is fixed. For unstructured grids there
is no such restriction. Unstructured grids, which include finite element methods, will not be
considered here. The general approach to handle complicated domains with structured grids is
to use an unstructured decomposition of the domain into subdomains of simpler shape, with a
structured grid inside each subdomain. We will consider only the case of a single subdomain,
with a structured grid constructed by a boundary-fitted coordinate mapping.

In general coordinates, accurate discretization of differential operators on staggered grids
is generally considered to be much more complicated (if not impossible) than on nonstaggered
grids. As a consequence, nonstaggered (or collocated) discretization is much more widespread
for the Navier-Stokes equations than staggered discretization, and prevails in commercial
codes. An incomplete list of publications taking this route is [2], [3] (one-sided discretization
of div u and gradp); [4]–[14] (using the pressure-weighted interpolation method of Rhie and
Chow [12]); [15]–[24] (employing artificial compressibility). But for incompressible flows,



22 P. Wesseling et al.

a price has to be paid for the ease of handling general coordinates that nonstaggered dis-
cretization brings. In order to avoid spurious oscillations, regularizing terms must be added
to the continuity equation. These terms may falsify transient behaviour, or make instationary
computations more costly and complicated, or make extension to weakly compressible flow
difficult, or are not suitable in the presence of strong body forces ([7]). Furthermore, good
coupling conditions at subdomain boundaries in domain decomposition methods are harder
to obtain. For these reasons, a relatively minor number of groups have sought to generalize
the staggered scheme from Cartesian to generalized coordinates. Some publications in this
direction are [25]–[34], and by our group (begging forgiveness for being complete this time)
[35]–[50].

We think that on the question of whether nonstaggered or staggered grids are preferable
the last word has not yet been said. Our purpose here is to show that the staggered scheme
can be generalized from Cartesian to general coordinates while maintaining accuracy even on
very nonuniform grids, provided the smoothness properties of the boundary-fitted coordinate
mapping are carefully taken into account. If this is not done or if too much smoothness is
implicitly assumed, the accuracy can become bad even on mildly nonsmooth grids. This ex-
perience has led many to think that on curvilinear grids, staggered discretization is inherently
less accurate than nonstaggered discretization, but we intend to show that this is not so.

On nonstaggered grids it is convenient to discretize in physical space, and no reference is
made to the coordinate mapping, so that its smoothness properties do not come into play, and
no serious degradation of accuracy is observed as the grid becomes less smooth. Staggered
discretization may also be carried out in physical space; this is done in [31]. We expect this
method to behave satisfactory on nonsmooth grids, althoug this is not shown in [31]. But on
staggered grids, discretization in physical space puts a heavy demand on geometric insight
and pictorial representation, which is why we have developed an algebraic formulation. Fur-
thermore, we think it desirable to bring out explicitly the role of the smoothness properties
of the coordinate mapping. We will use tensor notation and derive a coordinate-invariant
discretization in general coordinates. This approach can be extended to governing equations
(in other fields) that contain tensors of rank higher than two. Discretization of such laws in
physical space on staggered grids would seem hard to do.

If the mesh-size jumps, the local discretization error is of first order for vertex-centered and
of zeroth order (which makes the scheme inconsistent in the maximum norm) for cell-centered
schemes for the convection-diffusion equation ([51]). This has made some believe that grids
need to be smooth for accurate results. But this is not so. In [51]–[54] it is shown that the
global discretization error is second order on strongly nonuniform grids. These results for the
convection-diffusion equation may be expected to carry over to the Navier-Stokes equations.
This is fortunate, because it allows us to switch abruptly from a fine mesh in thin boundary or
shear layers to a coarse mesh outside. For such grids, in [54]–[56] it is shown that the accuracy
is uniform in the Reynolds number, for the convection-diffusion equation. In order to allow
abrupt changes in mesh-size, we will assume the coordinate mapping to be merely piecewise
differentiable.

We will start by discussing as far as necessary geometric aspects of coordinate trans-
formations. A brief outline of nonstaggered discretization in physical space will be given.
Next, a staggered discretization will be presented for the incompressible Navier-Stokes equa-
tions, which is accurate on general nonuniform grids. Then we will generalize this to the
compressible case, obtaining a method with accuracy and efficiency uniform in the Mach num-
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ber. Finally reference is made to numerical experiments including two-equation turbulence
modeling.

2. Geometric quantities and their smoothness

For brevity we will only discuss the two-dimensional case, but the following considerations
apply also in three dimensions. For deriving accurate discretizations with economic formulae
it is useful to first establish some elementary geometrical properties related to coordinate
transformations and structured grids, paying special attention to smoothness properties.

Let the physical domain� be topologically equivalent to the unit squareG. In Ḡ we have
Cartesian coordinatesξ = (ξ1, ξ2) and a uniform gridGh, consisting of cell vertices located
at ξ j , j = (j1, j2):

Gh = {ξ j : ξαj = jα1ξα, jα = 0,1, . . . 1/1ξα, α = 1,2}, (2.1)

where 1/1ξα ∈ N. Greek indices will be used exclusively to refer to coordinate directions, and
vice-versa. Unless stated otherwise, summation is implied exclusively over pairs consisting
of one Greek superscript and one Greek subscript in terms and products. This summation
convention does not apply to (2.1).

It is assumed that a boundary-fitted coordinate mapping is generated numerically, giving a
mapping ofGh into �̄:

xj = xj (ξ j ), x ∈ �̄, ξ j ∈ Gh. (2.2)

In order to provide a solid foundation for deriving accurate discretizations, we have to be
precise about how the mapping (2.2) is extended to all ofḠ. To allow rough grids for reasons
given in the preceding section, the mapping (2.2) is extended by bilinear interpolation. Let
�j ∈ �̄ be a geometric figure to be further defined shortly with vertices

xj−e1−e2, xj+e1−e2, xj−e1+e2, xj+e1+e2, e1 = (1
2,0), e2 =

(
0, 1

2

)
(2.3)

(since the vertices have integer indices, this implies thatj1 andj2 are fractional). The image
of �j in Ḡ is a rectangle calledGj ; Gj and�j are called cells. Letξ0 be some point inGj .
Bilinear interpolation in�j gives the following relation betweenx andξ :

x = x0+ cα(ξα − ξα0 )+ c12(ξ
1− ξ1

0)(ξ
2− ξ2

0). (2.4)

Bold Latin letters will always denote vectors inR × R, whether they have subscripts or not.
Since the mapping (2.4) is different in every cell, the definition (2.4) makes the mapping
piecewise bilinear. The edges ofGj are straight and on every edge,ξ1 or ξ2 is constant. This
makes the mapping (2.4) linear at the edges, so that the edges of�j are also straight, as
indicated in Figure 1. Each cell has its own mapping (2.4). The coefficientsx0, cα andc12

follow from the requirementx(ξm) = xm, m = 1,2,3,4 where the subscriptm refers to the
vertices enumerated in Figure 1, and are easily determined as follows. Chooseξ0 in the center
of Gj , and define new variablessα by

ξα = ξα0 + 1
21ξ

αsα (no summation) (2.5)
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Figure 1. Grid cell in physical space (�j ) and in computational space (Gj ).

so that (2.4) becomes

x = x0+ bαsα + b12s
1s2 (2.6)

with

bα = 1
21ξ

αcα, b12 = 1
41ξ

11ξ2c12 (no summation). (2.7)

By requiringx(ξm) = xm, m = 1,2,3,4, we obtain the following system of equations:

Ay = r, (2.8)

with y = (b1,b2,b12, x0)
T , r = (x1, x2, x3, x4)

T and

A =


−1 −1 1 1

−1 1 −1 1

1 1 1 1

1 −1 −1 1

 .

The columns ofA are orthogonal. Premultiplication of (2.8) byAT givesy = 1
4A

T r so
that, definingxmn ≡ xm + xn

b1 = 1
4(x34− x12), b2 = 1

4(x23− x14),

b12 = 1
4(x13− x24), x0 = 1

4(x12+ x34).
(2.9)

The coordinate mappingx = x(ξ) is assumed to be a bijection, so that we have for the Jacobian

J = ∂x
∂ξ1
⊗ ∂x
∂ξ2
6= 0, (2.10)

where the operator⊗ is defined as

a⊗ b≡ a1b2− a2b1. (2.11)

It is furthermore assumed thatJ > 0, i.e. thexα andξα coordinate systems are right-handed
By the definition of the outer product, in three dimensions the vectora× b has magnitude

equal to twice the area of the triangle spanned bya andb; hence, in two dimensionsa⊗ b
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with a andb ordered counterclockwise equals twice the area of the triangle spanned bya and
b. It follows that the cell area is, with the vertex enumeration of Figure 1,

|�j | = 1
2(x3− x1)⊗ (x4− x2), (2.12)

where we have taken advantage of the identitiesa⊗ a = 0 anda⊗ b = −b⊗ a. The vector
smn normal to a cell edgexm− xn with length|xm− xn| will be called the cell edge vector. For
complete specification, we add the requirement, assumingξα = constant onxm − xn, thatsmn
points into the cell whereξβ(β 6= α) is largest. It follows that (cf. Figure 1)

s12 =
(
x2

1 − x2
2

x1
2 − x1

1

)
, s23=

(
x2

3 − x2
2

x1
2 − x1

3

)
,

s34 =
(
x2

4 − x2
3

x1
3 − x1

4

)
, s14=

(
x2

4 − x2
1

x1
1 − x1

4

)
.

(2.13)

The covariant base vectorsa(α) are defined by

a(α) ≡ ∂x
∂ξα

or a
β

(α) ≡
∂xβ

∂ξα
, (2.14)

with aβ(α) the Cartesianxβ -component of the vectora(α). We put parentheses aroundα to
emphasize that no component is intended. Becausex = x(ξ) is piecewise bilinear,a(α)
is piecewise continuous. In the cell interior and on edgesξβ= constant,β 6= α, a(α) is
continuous, buta(α) is discontinuous at cell edgesξα = constant. For instance,a(1) is dis-
continuous at the cell edgex3 − x2 (cf. Figure 1). We will needa(α) only in the cell center
xC = 1

4(x1+x2+x3+x4) and at the cell edge centers wherea(α) is continuous. For mnemonic
convenience, cell edge centers are indicated by subscriptsN,W, S,E, whereN stands for
north etc., so that for instancexN = 1

2(x3 + x4). In xC we have in (2.6)s1 = s2 = 0, in xN
we haves1 = 0, s2 = 1 etc. From (2.5), (2.6), (2.7), (2.9) and (2.14) it is easily seen that we
have exactly

a(1)C = (xE − xW)/1ξ1, a(2)C = (xN − xS)/1ξ2,

a(1)N = (x3− x4)/1ξ
1, a(1)S = (x2− x1)/1ξ

1,

a(2)E = (x3− x2)/1ξ
2, a(2)W = (x4− x1)/1ξ

2.

(2.15)

The contravariant base vectors are defined by

a(α) ≡ ∇ξα or a
(α)
β ≡

∂ξα

∂xβ
,

wherea(α)β is the Cartesianxβ -component of the vectora(α). We have

a(α) · a(β) = δαβ , (2.16)

with δαβ the Kronecker delta. Solving (2.16) gives

a(1) = 1√
g

(
a2
(2)

−a1
(2)

)
, a(2) = 1√

g

( −a2
(1)

a1
(1)

)
, (2.17)
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where
√
g is the common designation in tensor analysis for the JacobianJ defined in (2.10),

i.e.

√
g ≡ a(1) ⊗ a(2). (2.18)

From the smoothness properties ofa(α) it follows that
√
g, a(α) and

√
ga(α) are discontinuous

at cell edges, except that
√
ga(α) is continuous at cell edges of the typeξα = constant. From

(2.17), (2.15) and (2.13) it follows that
√
ga(α) is closely related to cell edge vectors:

(
√
ga(1))E = sE/1ξ

2, (2.19)

wheresE = s23, etc.
Not surprisingly,

√
g is closely related to the cell area. We have, using (2.18), (2.15) and

(2.12),
√
gC1ξ

11ξ2 = (xE − xW)⊗ (xN − xS)

= 1
4(x2+ x3− x1− x4)⊗ (x3+ x4− x1− x2) = �j.

3. Collocated discretization of the incompressible Navier-Stokes equations

Our major concern in this paper is with the effect of grid nonuniformity on discretization
accuracy of staggered schemes. This brief section merely serves to illustrate that for collocated
schemes, discretization can easily be done in the physical domain�, and that the smoothness
properties of the coordinate mappingx = x(ξ) (which serves only to generate a grid in�) do
not enter explicitly.

The incompressible Navier-Stokes equations can be written as (summation intended)

∂q

∂t
+ ∂fα/∂xα = 0, (3.1)

where

q ≡


u1

u2

0

 , fα ≡


u1uα + pδ1

α − Re−1(∂u1/∂xα + ∂uα/∂x1)

u2uα + pδ2
α − Re−1(∂u2/∂xα + ∂uα/∂x2)

uα

 .
Using the finite volume method and the divergence theorem, Equation (3.1) is integrated over
the cell�j (with vertices given in (2.3):

d

dt

∫
�j

q d�+
∫
0j

fαn
α d0 = 0. (3.2)

One writes

d

dt

∫
�j

q d� = |�j |dqjdt
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and the valueqj is assigned to the cell center. The contour integral in (3.2) is approximated
by, taking for instance the segment0S of 0∫

0S

fαn
α d0 = −fαSsαS ,

with sS = s12 the cell edge vector defined in (2.13). To complete the discretization, cell face
values such asfαS need to be approximated further and expressed in terms of the unknowns
qj located in the cell centers. How to do this for the convection terms has been the subject of
much study, but does not concern us here. To outline the treatment of the viscous terms, we
take as an example∫

0E

Re−1 ∂u
1

∂xα
nα d0 = Re−1(∇u1 · s)E, (3.3)

where∇u1 stands for(∂u1/∂x1, ∂u1/∂x2)T . On a general structured grid, this quantity can be
expressed in terms of surrounding cell center values as follows. We write, using the convention
u1|kj = u1

k − u1
j ,

u1
∣∣∣j+2e1
j =

∫ xj+2e1

xj
∇u1 · dx ∼= (∇u1)E · c(1), c(1) = xj+2e1 − xj ,

wheree1 has been defined in (2.3). Similarly,

u1
∣∣∣j+2e2
j−2e2

+ u1
∣∣∣j+2e1+2e2
j+2e1−2e2

=
{∫ xj+2e2

xj−2e2

+
∫ xj+2e1+2e2

xj+2e1−2e2

}
∇u1 · dx ∼= (∇u1)E · c(2),

c(2) = x
∣∣∣j+2e2
j−2e2
+ x

∣∣∣j+2e1+2e2
j+2e1−2e2

.

We now have two equations for(∇u1)E, which we may denote byC(∇u1)E = b. The rows
of C arec(1) andc(2). It is easy to see that the columns ofC−1 arec(1) andc(2), defined by (cf.
(2.17))

c(1) = 1

|C|

(
c2
(2)

−c1
(2)

)
, c(2) = 1

|C|

( −c2
(1)

c1
(1)

)
, |C| = c(1) ⊗ c(2).

Hence(
∂u1

∂xα

)
E

= c(β)α bβ.

Collocated discretization on a grid generated by a general boundary-fitted coordinate mapping
is seen to be not much more difficult than on a Cartesian grid. It is easily seen that all approx-
imations are exact forq = constant, regardless of the sizes and shapes of the cells. Effects
of grid nonuniformity are similar to those in the Cartesian case. This explains the preference
shown by practitioners for collocated discretization when general structured grids are used.
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As discussed in Section 1, collocated discretization of the incompressible Navier-Stokes
equations has the disadvantage, that special measures must be taken to prevent spurious
pressure oscillations. We will not discuss this further.

4. Staggered representation of the velocity vector field

We want to generalize the classical staggered Marker-And-Cell (MAC) scheme proposed in
[1] from Cartesian to general coordinates. This means that we wish to compute the pressure in
cell centers, and normal velocity components in cell edge centers. As noted in Section 2, the
contravariant basis vectora(α) is perpendicular to curvesξα = constant, so at first sight the
contravariant velocity componentsUα, defined asUα = u · a(α), would seem to be suitable
for representing the velocity field, and has been used as such in several publications. But we
saw thata(α) is discontinuous at cell edges. As a consequence, the use ofUα in numerical
schemes leads to bad accuracy on rough grids. However,

√
ga(α) is continuous at cell edges

whereξα = constant. Therefore the following coordinate-invariant staggered representation
of the velocity field will be used (from now on denotingxE by xj+e1, etc.):

V 1
j+e1 = (

√
ga(1) · u)j+e1, V 2

j+e2 = (
√
ga(2) · u)j+e2, (4.1)

and similarly for other cell faces. Since (using (2.19))

(
√
ga(1) · u)j+e1 = sE · uE/1ξ2, (4.2)

we see thatV 1
j+e11ξ

2 is an approximation to the volume flux through the cell edge with center
atxj+e1. ThereforeV 1, V 2 will be called the volume flux components.

We will need to approximateV α andu in various points in the grid; not only in the cell
edge centers where the correspondingV 1 or V 2 are defined. This needs to be done carefully.
A certain tedium is unavoidable. We have

V α = √ga(α) · u, u = a(α)V α/
√
g. (4.3)

From (2.17) and (2.18) we see that we can also write

V 1 = u⊗ a(2), V 2 = −u⊗ a(1). (4.4)

We impose the following requirement on formulas for definingV 1 andV 2 in points other than
their proper grid nodes: constant velocity fieldsu must be invariant under transformation to
V α-representation and back. More precisely, ifu is given, andV 1

j+e1, V
2
j+e2 are computed

with (4.4), andV α is determined in some other point by some interpolation recipe, andu is
recomputed with (4.3), then the originalu must be recovered exactly in the special case that
u = constant. We have found this invariance requirement essential for maintaining accuracy
on rough grids.

Our definition ofV α in the cell centerxj is

V 1
j ≡ 1

2(V
1
j−e1 + V 1

j+e1), V 2
j ≡ 1

2(V
2
j−e2 + V 2

j+e2). (4.5)

We show that the above invariance requirement is met. Note that from (2.15) it follows that

a(1)j = 1
2(a(1)j−e2 + a(1)j+e2), a(2)j = 1

2(a(2)j−e1 + a(2)j+e1). (4.6)
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(this is a consequence of the bilinearity of the coordinate mappingx = x(ξ )). Supposeu =
constant. Then (4.5), (4.4) and (4.6) give

V 1
j = 1

2u⊗ (a(2)j−e1 + a(2)j+e1) = u⊗ a(2)j ,

V 2
j = −1

2u⊗ (a(1)j−e2 + a(1)j+e2) = −u⊗ a(1)j .
(4.7)

Computinguj from (4.7) using (4.3) gives

uj = 1√
gj
{a(1)j(u⊗ a(2)j )− a(2)j (u⊗ a(1)j )}. (4.8)

By using (2.11), we easily see that this gives

uj = 1√
gj

u(a(1)j ⊗ a(2)j ) = u, (4.9)

which shows that our invariance requirement is met.
Next, we consider the cell-edge centerxj+e1. There we defineV 2

j+e1 as the average between
the values at the nearestV 2-nodes:

V 2
j+e1 ≡ 1

4(V
2
j−e2 + V 2

j+e2 + V 2
j+2e1−e2 + V 2

j+2e1+e2). (4.10)

In order to apply (4.3) and (4.4) we need to give
√
g and a(1) at xj+e1, where they are

discontinuous. We definea(1) similar toV 2:

a(1)j+e1 ≡ 1
4(a(1)j−e2 + a(1)j+e2 + a(1)j+2e1−e2 + a(1)j+2e1+e2), (4.11)

√
gj+e1 ≡ (a(1) ⊗ a(2))j+e1. (4.12)

In a similar way as before, we check whether the invariance condition is satisfied. Ifu =
constant, (4.10), (4.4) and (4.11) giveV 2

j+e1 = −u ⊗ a(1)j+e1 and of course, by definition,
V 1
j+e1 = u ⊗ a(2)j+e1. Computinguj+e1 from V α

j+e1 gives (4.8) and (4.9) withj replaced by
j + e1, again showing that the invariance requirement is met.

Finally, we have to specify quantities at cell verticesxj+e1+e2. We define

V 1
j+e1+e2 ≡ 1

2(V
1
j+e1 + V 1

j+e1+2e2
), V 2

j+e1+e2 ≡ 1
2(V

2
j+e2 + V 2

j+2e1+e2),

a(1)j+e1+e2 ≡ 1
2(a(1)j+e2 + a(1)j+2e1+e2),

a(2)j+e1+e2 ≡ 1
2(a(2)j+e1 + a(2)j+e1+2e2),√

gj+e1+e2 ≡ (a(1) ⊗ a(2))j+e1+e2.

In the same way as before it is easily shown that the invariant requirement is met.
It will be found later that this way of coping with nonsmoothness of the coordinate mapping

x = x(ξ), together with certain procedures to be followed in the next section, ensures accuracy
on rough grids.
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5. Coordinate-invariant discretization of the Navier-Stokes equations

Finite volume integration of the continuity equation divu = 0 over�j gives, if we use (4.1)
and (4.2)

0 =
∫
�j

div u d�=
∫
0j

u · n d0 = (u · s)
{∣∣∣j+e1j−e1+

∣∣∣j+e2
j−e2

}
= 1ξ2V 1

∣∣∣j+e1j−e1 +1ξ1V 2
∣∣∣j+e2
j−e2

.

(5.1)

For robustness, the discretization scheme should be coordinate invariant. This is the case for
(5.1), because it contains a contravariant representation of the velocity field.

A straightforward way to proceed would be to discretize the momentum equations written
in coordinate invariant form, using tensor analysis. However, in this formulation the so-called
Christoffel symbols occur. These involve second derivatives of the mappingx = x(ξ). Be-
cause the mapping is piecewise bilinear the Christoffel symbols are ‘infinite’ at cell edges.
Approximation of the Christoffel symbols by straightforward finite differences gives reason-
able results on smooth grids only. This is perhaps what has led to a widespread belief that
staggered discretization is inaccurate in general coordinates. In order to avoid the difficulty
with the Christoffel symbols we first transform only the independent variables, obtaining a
form that is not coordinate-invariant, which is discretized and used as a stepping stone to
arrive at a coordinate-invariant discretization.

The derivative of some quantityϕ transforms according to

∂ϕ

∂xα
= a(β)α

∂ϕ

∂ξβ
. (5.2)

By using the identity

∂

∂ξα
(
√
ga(α)) = 0

we can rewrite this as
∂ϕ

∂xα
= 1√

g

∂

∂ξβ
(
√
ga(β)α ϕ). (5.3)

The momentum equations can be written as

∂u
∂t
+ ∂

∂xα
(uαu) = −∇p + Re−1∂e(α)

∂xα
, (5.4)

where

e(α) ≡


∂u1

∂xα
+ ∂u

α

∂x1

∂u2

∂xα
+ ∂u

α

∂x2

 .
By applying (5.3), we can rewrite Equation (5.4) as

N(u, p) ≡ ∂u
∂t
+ 1√

g

∂

∂ξα
(uV α)+∇p − Re−1 1√

g

∂

∂ξα
(
√
ga

(α)
β e(β)) = 0. (5.5)
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Figure 2. Shifted finite volume�j+e1.

This equation is integrated over the shifted finite volume�j+e1 depicted in Figure 2. Treating
each term successively, we obtain∫

�j+e1

∂u
∂t

d� = |�j+e1| duj+e1/dt,

∫
�j+e1

1√
g

∂

∂ξα
(uV α) d� =

∫
Gj+e1

∂

∂ξα
(uV α) dξ1 dξ2. (5.6)

The two parts of|�j+e1| are evaluated exactly similar to (2.12). We have

I11 ≡
∫
Gj+e1

∂

∂ξ1
(uV 1) dξ1 dξ2 =

∫ ξ2
j2+1/2

ξ2
j2−1/2

(uV 1)

∣∣∣j1+1
j1

dξ2,

where the fact thatuV 1 is continuous inGj+e1 has been used. This integral is approximated
by the midpoint rule:

I11
∼= 1ξ2(uV 1)

∣∣∣j+2e1
j .

This is approximated further by using

V 1
j
∼= 1

2(V
1
j−e1 + V 1

j+e1). (5.7)

Similarly,

I12 ≡
∫
Gj+e1

∂

∂ξ2
(uV 2) dξ1 dξ2 ∼= 1ξ1(uV 2)

∣∣∣j+e1+e2j+e1−e2. (5.8)

This is further approximated usingV 2
j+e1+e2

∼= 1
2(V

2
j+e2 + V 2

j+2e1+e2). Integration of the pres-
sure term is done as follows:

I13≡
∫
�j+e1
∇p d� = ∇pj+e1|�j+e1|.

The term∇pj+e1 is expressed in terms of surrounding nodal values in the same way as done
for ∇u1 in (3.3), which results in

∇pj+e1 ∼= p
∣∣∣j+2e1
j c(1) +

{
p

∣∣∣j+2e2
j−2e2

+ p
∣∣∣j+2e1+2e2
j+2e1−2e2

}
c(2),

c(1) = 1

C

(
c2
(2)

−c1
(2)

)
, c(2) = 1

C

( −c2
(1)

c1
(1)

)
, C = c(1) ⊗ c(2), (5.9)

c(1) = x
∣∣∣j+2e1
j , c(2) = x

∣∣∣j+2e2
j−2e2
+ x

∣∣∣j+2e1+2e2
j+2e1−2e2

.
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Integration of the viscous term over�j+e1 gives the following two contributions:

I14 ≡ Re−1
∫ ξ2

j2+1/2

ξ2
j2−1/2

(
√
ga

(1)
β e(β))

∣∣∣j1+1
j1

dξ2. (5.10)

In (5.10),
√
ga(1) is constant. We write

I14
∼= Re−11ξ2(

√
ga

(1)
β e(β))

∣∣∣j+2e1
j .

The second contribution is

I15 ≡ Re−1
∫ ξ1

j1+1

ξ1
j1

(
√
ga

(2)
β e(β))

∣∣∣j2+1/2
j2−1/2 dξ1. (5.11)

In (5.11),
√
ga(2) is piecewise constant. We make the following approximation:

I15
∼= Re−11ξ1(

√
ga

(2)
β e(β))

∣∣∣j+e1+e2j+e1−e2,

where we define

(
√
ga(2))j+e1±e2 ≡ 1

2{(
√
ga(2))j±e2 + (√ga(2))j+2e1±e2}.

In I 14 andI15, e(β) has to be further approximated, which requires discretizations of deriva-
tives ofu. We start withI 14 and write, using (5.2),(

∂u
∂xβ

)
j

=
(
a
(α)
β

∂u
∂ξα

)
j

,

which is approximated by(
a
(1)
β

∂u
∂ξ1

)
j

∼= 1

1ξ1
(a
(1)
β )ju

∣∣∣j+e1j−e1,
(
a
(2)
β

∂u
∂ξ2

)
j

∼= 1

1ξ2
(a
(2)
β )ju

∣∣∣j+e2j−e2.

The same procedure cannot be followed forI15, because in this case we are at a cell vertex,
where the geometric quantities are discontinuous. Instead, we proceed in a similar way as for
∇p, and write

uα
∣∣∣j+2e1+e2
j+e2 =

∫ xj+2e1+e2

xj+e2
∇uα · dx ∼= ∇uαj+e1+e2 · c(1), c(1) ≡ x

∣∣∣j+2e1+e2
j+e2 , (5.12)

uα
∣∣∣j+e1+2e2
j+e1

∼= ∇uαj+e1+e2 · c(2), c(2) ≡ x
∣∣∣j+e1+2e2
j+e1 , (5.13)

with solution

∇uαj+e1+e2 = uα
∣∣∣j+2e1+e2
j+e2 c(1) + uα

∣∣∣j+e1+2e2
j+e1 c(2), (5.14)

with c(α) expressed in terms ofc(α) by (5.9).
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In a similar way, Equation (5.5) is integrated over the finite volume�j+e2, which is shifted
in theξ2-direction. This results in the following formulas:∫

�j+e2

∂u
∂t

d� = |�j+e2| duj+e2/dt,
∫
�j+e2

1√
g

∂

∂ξα
(uV α) d� = I21+ I22,

I21
∼= 1ξ2(uV 1)

∣∣∣j+e1+e2j−e1+e2, I22 ≡ 1
21ξ

1(uV 2)

∣∣∣j+3e2
j−e2 ,

I23≡
∫
�j+e2
∇p d� = ∇pj+e2|�j+e2|,

∇pj+e2 ∼= p
∣∣∣j+2e2
j c(1) +

{
p

∣∣∣j+2e1
j−2e1
+ p

∣∣∣j+2e1+2e2
j−2e1+2e2

}
c(2),

with c(α) according to (5.9), with

c(1) = x
∣∣∣j+2e2
j , c(2) = x

∣∣∣j+2e1
j−2e1
+ x

∣∣∣j+2e1+2e2
j−2e1+2e2

,

Re−1
∫
�j+e2

1√
g

∂

∂ξα
(
√
ga

(α)
β e(β)) d� = I 24+ I 25,

I24 = Re−1
∫ ξ2

j2+1

ξ2
j2

(
√
ga

(1)
β e(β))

∣∣∣j1+1/2
j1−1/2 dξ2 ∼= Re−11ξ2(

√
ga

(1)
β e(β))

∣∣∣j+e1+e2j−e1+e2, (5.15)

I25 = Re−1
∫ ξ1

j1+1/2

ξ1
j1−1/2

(
√
ga

(2)
β e(β) dξ1

∣∣∣j2+1
j2

dξ1 ∼= Re−11ξ1(
√
ga

(2)
β e(β))

∣∣∣j+2e2
j . (5.16)

In (5.15) we define

(
√
ga(1))j±e1+e2 ≡ 1

2{(
√
ga(2))j±e1 + (√ga(2))j±e1+2ee}.

Furthermore, in (5.15) and (5.16)e(β) is approximated by the same method as forI14 andI15.
We may regard this finite volume discretization of (5.5), i.e.∫
�j+e1

N(u, p) d� = 0 and
∫
�j+e2

N(u, p) d� = 0, (5.17)

with the integrals approximated in the way described above, as semi-discretized evolution
equations foru at the cell-edge centers (by semi-discretization we mean discretization in
space but not in time). This is not what we want, because we wish to generalize the classical
staggered scheme of [1] from Cartesian to general coordinates, which implies that we want
evolution equations for the normal velocity components at cell edge centers, or preferably for
the volume flux componentsV 1

j+e1 andV 2
j+e2, as argued in Section 4. With the use of (4.4), we

achieve this by replacing (5.17) by

−a(2)j+e1 ⊗
∫
�j+e1

N(u, p) d� = 0, a(1)j+e2 ⊗
∫
�j+e2

N(u, p) d� = 0.
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We obtain, using (5.6) and (4.4),

−a(2)j+e1 ⊗
∫
�j+e1

∂u
∂t

d� = |�j+e1| dV 1
j+e1/dt,

which is indeed what we want. Furthermore, using (5.7),

−a(2)j+e1 ⊗ I11
∼= −1

21ξ
2a(2)j+e1 ⊗ (uV 1)

∣∣∣j+3e1
j−e1 . (5.18)

In order to obtain a closed system of equations involving only the unknownsV α andp, and
to obtain a fully coordinate-invariant formulation,u in (5.18) is expressed in terms ofV α in
the way described in Section 4. That is, we write, for example,uj−e1 = (a(α)V α/

√
g)j−e1 and

definea(α)j−e1, V
2
j−e1 and

√
g
j−e1 according to (4.10)–(4.12). The other contributions to the

finite volume integral over�j+e1 are handled similarly. For the integral over�j+e2 we have

a(1)j+e2 ⊗
∫
�j+e2

∂u
∂t

d� = |�j+e2| dV 2
j+e2/dt,

which is again precisely what we want. There is no need to describe the procedure for the
remaining terms.

What we obtain in this way is a fully coordinate-invariant discretization, that in the case of
the identity mappingx = ξ reduces to the classical Cartesian staggered grid discretization
of [1]. Furthermore, the discretization error is zero foru and∇p constant, regardless of
smoothness and nonorthogonality of the grid. It would be too tedious to show this here, but
verification by numerical experiment is easy.

Figure 3. Stencils of inertia, pressure and viscous terms:• : u,− : V 1, | : V 2,2 : p.

Figure 3 shows at which points of the grid (in theξ -plane)u, V α andp are used in
the finite volume discretization for aV 1-cell of the inertia, pressure and viscous terms.V α-
points needed to expressu ande(β) in terms ofV α are included. The stencil of the viscous
term contains 9V 1-points. This is not more than expected, since mixed derivatives have to be
approximated if the coordinates are nonorthogonal. In addition, the viscous stencil contains 12
V 2-points. In view of the fact that second order differential operators have to be approximated
in the fourV 2-points surrounding the centralV 1-point, this seems a reasonable number.
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One may wonder how it is possible that a coordinate-invariant discretization has been ob-
tained without encountering Christoffel symbols. This may, to a certain extent, be elucidated
as follows. The Christoffel symbols are defined by{

α

βγ

}
≡ a(α) · ∂a(β)

∂ξγ
. (5.19)

In (5.17), more particularly, for example, in the contributiona(2)j+e1 ⊗ I 14, products ofa(2)
in one point anda(α) in neighbouring points are hidden, similar to what one would get by
discretizing (5.19) (assuming differentiability ofa(β)). Contravariant base vectorsa(α) are
implicitly present inI14, becausec(α) in (5.12), (5.13) is related toa(α), andc(α) in (5.14)
to a(α). Another way of looking at our circumvention of Christoffel symbols is to note that
finite volume integration precedes transformation to invariant form, so that integrals of the
Christoffel symbols are required, removing the derivative in (5.19).

The spatial discretization is completed by implementing the boundary conditions. This
presents no particular problem, and will not be discussed here.

6. Solution methods

If we put all unknowsV 1
j+e1 andV 2

j+e2 in some order in an algebraic vectoru and all unknowns
pj in an algebraic vectorp, the semi-discretized incompressible Navier-Stokes equations go
over in a differential-algebraic system of the following structure:

du

dt
+N(u)+Gp = f (t), Du = g(t). (6.1)

HereN is a nonlinear algebraic operator arising from the discretization of the inertia and
viscous terms,G andD are linear algebraic operators corresponding to the gradient and
divergence operators, andf andg are known terms, arising from the boundary conditions.

Temporal discretization methods carry over directly from the Cartesian to the general
coordinates case, and result in systems of the following general form, assuming a constant
timestepτ and a superscriptn to indicate time leveltn = nτ :

A(un)+ τGpn−1/2 = rn, Dun = g(tn), (6.2)

wherern is known from previous time steps and the boundary conditions. For explicit meth-
ods, the nonlinear algebraic operatorA is the identity. For example, the second order Adams–
Bashforth method applied to (6.1) gives

un − un−1 + 1
2τ {3N(un−1)−N(un−2)+G(3pn−1 − pn−2)}

= 1
2τ {3f (tn−1)− f (tn−2)},

Dun = g(tn).
(6.3)

In order to avoid an overdetermined system,un andpn−1 must be determined simultaneously.
The solution forun is not affected if we definepn−1/2 = 3

2p
n−1 − 1

2p
n−2, which results in

a system of the form (6.2). The formulation (6.2) brings out more clearly than (6.3) the fact
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that the pressure acts as a Lagrangian multiplier guaranteeing satisfaction of the continuity
equation. As a second example, application of theθ-method to (6.1) gives

un − un−1 + θτN(un)+ (1− θ)τN(un−1)+ τGpn−1/2 = θf (tn)+ (1− θ)f (tn−1),

Dun = g(tn),
which is again of the form (6.2).

For computing time-dependent solutions of (6.2), pressure correction is the method of
choice. With the pressure-correction method, (6.2) is not solved as it stands, but first a predic-
tion u∗ is made that does not satisfy the continuity equation. Then a correction is computed
involving the pressure such that continuity is satisfied. The advantage of this is thatun and
pn−1/2 are solved for separately. The pressure correction method is given by

A(u∗)+ τGpn−3/2 = rn, (6.4)

un − u∗ + τG(pn−1/2− pn−3/2) = 0, (6.5)

Dun = g(tn). (6.6)

Equation (6.4) more or less amounts to solving discretized convection-diffusion equations for
the predicted velocity components. Next,pn−1/2 is computed by applyingD to (6.5) and using
(6.6), resulting in

DGδp = 1

τ
(Du∗ − g(tn)), pn−1/2 = pn−3/2+ δp. (6.7)

After δp has been computed,un follows from (6.5). BecauseDG is a discrete Laplacian, (6.7)
is frequently called the pressure Poisson equation. Note that no boundary conditions need
to be invoked forδp, which is fortunate, because no such conditions are given in general.
The boundary conditions have already been incorporated inD,G, g andrn; the operatorDG
works exclusively on pressure values in grid points in the interior of the domain. The issue of
boundary conditions for the pressure Poisson equation (which does not arise with the approach
followed here) is discussed extensively in [57], [58], [59].

Even if the method is explicit(A = I ), we still have to solve an implicit system forδp.
This is a consequence of the differential-algebraic nature of (6.1). By elimination ofu∗ it is
easily seen that in the explicit case the pressure correction method (6.4)–(6.6) is equivalent to
(6.2), and this remains true ifpn−3/2 is neglected in (6.4) and (6.5). But in the implicit case
this does not hold, and inclusion of a sufficiently accurate first guess forpn−1/2 in (6.4), such
aspn−3/2, seems to be necessary to obtain full temporal accuracy forun. This may make it
necessary to compute the initial pressure at the starting step(n = 1), to be substituted for
p−1/2. This may be done as follows. Application ofD to (6.1) gives

dg(t)

dt
+DN(u(t))+DGp(t) = Df (t). (6.8)

After putting t = 0 and solvingp(0) from (6.8), we putp−1/2 = p(0) in (6.4).
In the Cartesian case, convergence of the method is studied theoretically in [60] and refer-

ences quoted there. The pressure correction method has been formulated and studied in [1],
[61]–[68]. Indications are that the temporal accuracy ofun is the same as the order of accuracy
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of the underlying time stepping method, but that the accuracy ofpn−1/2 isO(τ), irrespective
of the temporal discretization used. If one desires, a pressure field with improved accuracy
can be obtained afterun has been computed, by using (6.8) fort = tn to findpn with the same
order of temporal accuracy asun.

For stability of (6.4)–(6.6) it seems necessary that (6.4) is stable. Since (6.4) is very close
to a system of convection-diffusion equations forV 1 andV 2, application of Fourier analysis
to show von Neumann stability is relatively easy ([69]). We think, supported by numerical
evidence, that stability of (6.4) is sufficient for stability of (6.4)–(6.6).

In the explicit case, the bulk of the computing time goes to solvingδp from (6.7), so it pays
to do this efficiently. On uniform grids in orthogonal coordinates, fast Poisson solvers based
on fast Fourier transformation and/or cyclic reduction are in widespread use. A survey of these
methods is given in [70]. On general grids these methods are not applicable. In general, the
matrix of (6.7) is not symmetric, and when the coordinates are strongly nonorthogonal it is
not anM-matrix. But multigrid [71], [72], [73] and preconditioned Krylov subspace methods
[74], [41], [42], [73] work fine. For robustness, the smoother or preconditioner must be able
to cope with high cell aspect ratios. This, and the influence of mixed derivatives is modeled
by the rotated anisotropic diffusion equation of Chapter 7 in [72], where efficient and robust
smoothers for this problem are identified; these may also be expected to be effective precon-
ditioners for Krylov subspace methods. These methods are of line relaxation or incomplete
LU type, namely damped alternating Jacobi or zebra relaxation, alternating line Gauss–Seidel
and various ILU variants; for details see [72].

In the implicit case, (6.4) also has to be solved iteratively. The nonlinear character is taken
care of by some outer iteration or a prediction of nonlinear coefficients by extrapolation
from previous time levels, so for the present discussionA is assumed linear. With central
discretization of convection and a practical Reynolds numberA will not be anM-matrix, but
for τ small enough the main diagonal is enhanced sufficiently by the time derivative to put
iterative methods in business. Otherwise, the system may be preconditioned by a sufficiently
upwind-biased scheme (defect correction). In nonorthogonal coordinates mixed derivatives
can be significant, which causes ADI and other fractional step methods to loose much of
their lustre. Again, Krylov subspace and multigrid methods may be used. The convection-
diffusion equation can serve as a testbed for identifying robust and efficient smoothers and
preconditioners. In [72] the same methods as before are found to be eligible. Navier-Stokes
applications are shown in [72], [41], [42], [73].

7. Applications and extensions

In order to illustrate that the generalized coordinates staggered discretization described before
is at least as accurate as the discretization methods that are mostly used at present in codes
to compute Navier-Stokes solutions in complicated domains, namely collocated finite volume
methods using Rhie-Chow interpolation ([12]) and finite element methods, we approximate a
simple exact solution on a rough grid. The exact solution is Poiseuille flow:

u1 = x2(1− x2), u2 = 0, p = −2Re−1x1, Re= 1.

The grid, shown in Figure 4, is chosen rough deliberately. Figures 5, 6 and 7 give stream-
lines and isobars for the staggered discretization, a finite-element code usingQ1 − P0 ele-
ments (quadrilaterals with bilinear basis functions for the velocity and constant basis functions
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for the pressure) and a commercial code using collocated discretization with Rhie-Chow
interpolation.

Figure 4. Grid for Poiseuille flow.

Figure 5. Streamlines and isobars for staggered discretization.

Figure 6. Streamlines and isobars for finite element method.

Figure 8 gives an even wilder grid, meant to investigate the effect of sudden refinement and
derefinement. Results are shown in Figures 9 and 10. We do not have results for the collocated
code for this case. The streamlines should be straight and the isobars straight and equally
spaced. Clearly, the staggered discretization is more accurate than the other two methods.
This illustrates that staggered schemes are not inherently inaccurate on general grids. On the
contrary, they can be quite accurate, provided the smoothness properties of the boundary-fitted
coordinate mapping are carefully taken into account. This can be done in the way described
above.

We will now discuss extension to compressible flows such that accuracy and efficiency are
uniform in the Mach number M as M↓ 0. The limit M ↓ 0 of the Euler and Navier-Stokes
equation is singular ([75], [76]). Classical methods to compute compressible flows break down
as M↓ 0. Measures can be taken to decrease to a certain extent the lowest value of M for
which reasonable results can be obtained ([77]–[80]) (until M∼= 0·1), but these measures
usually falsify transient behaviour and are therefore limited to stationary flows, and M = 0
cannot be reached. A method that tends to an established method for incompressible flows as
M ↓ 0 obviously does not break down for small Mach numbers. A way to obtain methods with
Mach-uniform accuracy and efficiency is therefore to generalize methods designed for the
incompressible case to the compressible case. For the stationary Navier-Stokes equations this
has been done with a collocated scheme in [81] and for a staggered scheme in [82]–[85]. Col-
located schemes add, either implicitly or explicitly, an artificial regularizing term to the mass
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Figure 7. Streamlines and isobars for collocated discretization.

Figure 8. Grid for Poiseuille flow.

conservation equation; for an explicit expression of this term generated by the Rhie-Chow
velocity interpolation method [12], see [10]. Introduction of weak compressibility entails a
small physical modification of the mass conservation equation, which may be dominated by
the artificial regularizing term. This is not the case for staggered schemes, which seems to be
an advantage, especially for instationary flows.

The difficulties associated with M↓ 0 already fully manifest themselves for the Euler
equations, to which we restrict ourselves here. A generalization of the staggered scheme and
pressure correction method described before to the instationary compressible Euler equations
is given in [86]. The M↓ 0 singularity is removed by a proper choice of units. Except for the
pressure, these are the usual inflow or stagnation conditions, indicated by a subscript∞ or 0,
respectively. The choice for the dimensionless pressure is crucial:

p̃ = p − p1

ρ0w2∞
,

wherep1 is the outlet pressure (subsonic inflow) or the inlet pressure (supersonic inflow),
andw is the velocity magnitude. The primary (dimensionless) unknowns are (deleting tildes)
p, uα and enthalpyh. The densityρ follows from the dimensionless equation of state, which
is easily found to be:

ρ = ρ(p, h) = γM2∞
1+ γ−1

2 M2∞

p

h
+
[
pv

{(
1+ γ − 1

2
M2
∞

) −γ
γ−1

− 1

}
+ 1

]
1

h
,

Figure 9. Streamlines and isobars for staggered discretization.
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Figure 10. Streamlines and isobars for finite element method.

wherepv = (p∗1−p∗0)/ (p∗∞ −p∗0), denoting dimensional quantities by an asterisk. The Euler
equations are invariant under this nondimensionalization. With pressure as primary unknown,
the mass conservation equation is given by

(
∂ρ

∂p

)
h

∂p

∂t
+
(
∂ρ

∂h

)
p

∂h

∂t
+ ∂ρu

α

∂xα
= 0.

Note that as M∞ ↓ 0 there is no singularity in the equations of motion and the equation
of state. The equations are discretized on a staggered grid in general coordinates in the way
described before. Time-stepping takes place with the pressure-correction method as described
in [86]. In subsonic flow central discretization can be used. As for standard methods for
compressible flows, in order to enforce thermodynamic irreversibility, some form of upwind-
biased scheme is to be used when M> 1, with, in addition, an upwind-biased evaluation of
the density. The resulting method performs well on the full range of Mach numbers from zero
until real gas effects set in. Examples are given in [86].

Extension to turbulent flow is straightforward. Two-equation turbulence models, such as
thek− ε andk−ω models, can be discretized on general staggered grids using the principles
outlined before ([46]–[50]). Turbulence quantities such ask, ε andω are located in the same
grid points as the pressure. For higher order accuracy while maintaining positivity ofk andε,
higher order upwind biased schemes with flux limiting can be extended to general staggered
grids [47]. Robustness with respect to grid nonuniformity and nonorthogonality is illustrated
for a number of turbulent flows in [48]–[50].

8. Concluding remarks

We have shown how the classical staggered scheme for the incompressible Navier-Stokes
equation can be generalized from Cartesian to coordinate invariant form on general strongly
nonuniform and nonorthogonal grids in such a way that the accuracy is at least as good as
a typical finite element method and a collocated scheme using Rhie-Chow velocity inter-
polation. The accuracy is maintained when two-equation turbulence modeling is included.
Extension of the usual solution techniques to general structured grids is straightforward.
Because on staggered grids no artificial regularization is needed for the mass conservation
equation, accurate extension to weakly compressible instationary flows is possible, provided
the equations are made dimensionless in such a way that the M↓ 0 singularity is removed
from the equations. The resulting scheme is found to work satisfactorily for all Mach numbers
from M = 0 to M> 1. The basic principles discussed extend to the three-dimensional case,
but more technicalities are involved. The three-dimensional case will be discussed elsewhere.
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